Modular forms
80. Some motivation and background

In this course use will study the most classical "automorphic forms" namely (elliptic) modulo Forms.
They can be thought as a generalization of periodic funchons:
let's begin with the definition of periodic gunchons on \mathbb{R}.
A function $f=\mathbb{R} \rightarrow \mathbb{L}$ is penodic with period, soy 1, if
*) $f(x+1)=f(x) \quad \forall x \in \mathbb{R}$.
Infect © implies that $f(x+n)=f(x)$

$$
\forall n \in \mathbb{Z}, \forall x \in \mathbb{R}
$$

Recall the group \mathbb{Z} acts on \mathbb{R} by translohon

$$
\begin{aligned}
\cdot \mathbb{R} x \mathbb{R} \longmapsto \mathbb{R} \\
(n, x) \longmapsto n \cdot x=n+x
\end{aligned}
$$

and the peñdic punching f is gust a function which is invariant under this action

A veng pouegul tool in shudying perpodic functions is Tourter analysis, which is Hemonic anclysis on \mathbb{R} / \mathbb{Z}.
The question/problem is to express any penotic, "reasonably nice funchon in tems of "simple" ones.
Note the $s t$ of all penodic funchons is a vechor space, and there $\overline{1}$ an prer product defoed on t l of

$$
\langle f, g\rangle=\int_{0}^{1} f(x) \frac{1}{g(x)} d x \quad\left(\begin{array}{c}
0 \\
\\
\text { nce } \operatorname{lecs} t f 0
\end{array}\right.
$$

We are locing for an arthotomal besis en of such Inchors so thot

$$
\begin{aligned}
& f(x)=\frac{2}{n} e_{n}(x) \\
& a_{n}=\int_{0}^{n}(x) e_{n}(x) d x
\end{aligned}
$$

Ore such choice it $e_{n}(x)=e^{2 \pi i n}$. uhich leads fo the exponenhel Fourien señes the good beci abowe aries as cigenfuchions of a differenhal opentor, namely tre Loplace opertor

$$
\Delta=\frac{d^{2}}{d x^{2}}
$$

Side nofe: the onginal problem
Which motivated fouñer los finding the gener soln for tre heat equahon ip a thin plate-lt wos knoun that if the root sourge was exprossible as a sinusbidal wave, then the solution wos similory expressible as a sinusoudal woue. The idea was do use a syperposition of woves to difeek the problem for on arbitrany leot sounca.

This semester we will study
funchons not on \mathbb{R} but on $H=$ upper half Which will be invonant plare or tronsfoming in a prescnbed woy with respect to tre achōn of a gnoppon
It, namely the grop $s<(2,7 \angle)$ of
2×2 motege- mahies of det 1 , (or its s/grops
by Linec frechone frem fomatuons,
We can ust vañous regularty anditans on such funchons the con ask for example thet (1) They ae holom on H or (2) 1 (2) romopphic on It
o-(3) venfunchops of sone deffe operthe nonely the sonexpending Aeplaciken
(1) We will ask sone condihons on the srouth of $f=1 H \rightarrow$ it as reMt goes to ∞

We IIl stect with the strongest reghanty condihons and depending on tine me withtook at ofter clusses gf functions.
tre course is called modulor foms We con stott by asking whee tre word modulo is cerning fron? Modular refers to tre modut í spuce of complex cunes of genus one.
A complex cine of yenus 1 amzes from a latíce 1 in Q os $\mathbb{C / 1}$ A lofice 1 is aset

$$
\begin{aligned}
& A=\mathbb{Z} w_{1}+\mathbb{Z} w_{2} \quad \text { with }\left\{w_{1}, w_{2}\right\} \text { a bosis } \\
& \text { of } \mathbb{R} \text { oer } \mathbb{R}
\end{aligned}
$$

Whis is a comolex toous: $C / \Lambda=\{z+\Lambda \mid z \in \Phi\}$
Quolient of C by 1
Clt it also $5_{5} \times 5$

Agebraicolly, 77 is also on Abelion group under addition (inhented juon (1)
But it also has a complex shuchice
It is a Reemann sufuce, bennected
1 dinensiond camplex manfold.
(If is a wprected) Heusdurff spuce, which is endoued with on aflos of charts
to the open onit disc of Furth trensition imps behueen tho owrtpping? charts o, holomophic)
I/人 is a compect Rieamonn sufuce.
Tor two defferent tor $\quad \propto / \Lambda, ब / \Lambda^{\prime}$
we hove the following theoren
DPnop Sippose $\varphi=\sigma / \Lambda \rightarrow \Phi / \Lambda^{\prime}$
is a holonorphic map behween complex Tor Then \exists complex numbers $a, b \in \mathbb{C}$ with $a \Delta \subset \Lambda$ such that $\varphi(z+\Lambda)=a z+b+\Lambda^{\prime}$ the mep is inverkible if and ong of $a \Lambda=1^{\prime}$ (Tor a proof see for example Diamund-Schumer Drop 1.3.2) or complex Eunchons by JoAes singaman thm 4-181

When we soy 2 complextcenes of genus 1 ore somophic, we neon that there is a halon map beheen them which is inverthte so the above Prop. Says that $\& / \lambda_{1} \simeq \llbracket / \lambda_{2} \Longleftrightarrow \Lambda=\lambda_{2}$ fo sone $\lambda \in \mathbb{C}$

We soy 2 Lathes ore $\frac{\text { equivalent }}{\text { (homothenc) }}$ M, Λ_{2}
If $A_{1}=\lambda \lambda_{2}$ for some $\lambda \in \mathbb{Q}^{*}$
Any lathe $A=\mathbb{Z} w_{1}+\mathbb{Z} w_{2}=w_{2}\left(\mathbb{Z}\left(\frac{w_{1}}{w_{2}}\right)+\mathbb{L}\right)$
is equivalent to a lathe of the for

$$
A_{\tau}=\nless \varepsilon+\mathbb{L} \quad \omega / \quad \tau=w_{1} / w_{2}
$$

In fact we con assume $z=\frac{w_{1}}{\omega_{2}} \in \mathbb{H}=\{x+\pi y \mid y>0$ since $\lambda_{c} \simeq \lambda_{c}$.
From now on assume $\operatorname{In}\left(\frac{w_{1}}{u_{2}}\right)>0$

We also hove-
lemma $\lambda\left(w_{1}, u_{2}\right)=N\left(w_{1}^{\prime}, w_{2}\right)$
$\Leftrightarrow \exists \quad a, b, c, d \in \mathbb{Z}, \quad a d \quad b c= \pm 1$
such that

$$
\binom{w_{1}^{\prime}}{w_{2}^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{w_{1}}{w_{2}}
$$

Moreover of $\operatorname{Im} \frac{\omega_{1}}{\omega_{2}}>0$ then $\operatorname{Im}\left(\frac{w_{1}^{\prime}}{\left.\omega_{2}\right)^{\prime}}\right)$ hos the same sign as ad-bc.
Note this lemma also sos that The set $M=\left\{\left(w_{1}, w_{2}\right) \in \alpha^{2} \left\lvert\, \operatorname{In} \frac{w_{1}}{w_{2}}>0\right.\right\}$
is acted upon by $S C_{2}(\not \subset)$

$$
\text { va } \quad \gamma \cdot\left(\omega_{1}, \omega_{2}\right)==\left(a \omega_{1}+b \omega_{2}, c w_{1}+d w_{2}\right)
$$

and the set of all lattice

$$
\mathcal{L}=\left\{\Lambda\left(w_{1}, w_{2}\right)=\mathbb{L} w_{1}+\mathbb{w _ { 2 }} \left\lvert\, \begin{array}{c}
\left\{w_{1}, w_{2}\right\} \text { basis } \\
\text { of } \& / \mathbb{R}\}
\end{array}\right.\right.
$$

con be idontifud with the quolent

$$
S L_{2}(\mathbb{Z}) \backslash M
$$

Now consider A funchon $F=\mathcal{C} \rightarrow \mathbb{C}$ on Lattices Such a funchon is called modulo $y H\left(\Lambda_{1}\right)=F\left(\Lambda_{2}\right)$ whenever

$$
\lambda_{1}=\lambda \lambda_{2} \text { for some } \lambda \in c^{x}
$$

Since by tire above Prop
$\mathbb{G} A_{1} \cong \mathbb{G}\left(\lambda_{2}\right.$ whenever $\lambda_{1}=\lambda \lambda_{2}$
A modular funchen on lathes is a function on complex cure of sens 1 .

Since any Lathe $N\left(w_{1}, w_{2}\right) \sim \mathcal{C l}_{c}$ for som $\tau \in I H$, de Anchon $ד$ IT completely dofemined by its value on $f(\tau)==F(\mathbb{c}+\mathbb{Z})=F\left(\Lambda_{c}\right)$

The change of basis $\left.\left(w_{1}\right) \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) w_{1}\right)$
$w\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S C_{2}(\mathbb{C}) \quad$ Translate for f
into a modular invanonce property

$$
f\left(\frac{a c+b}{c z+d}\right)=f(z)
$$

For many applicobons invañance is too restrictive end instead one censldes functions on latheen which ore honuseneo $F=\mathbb{R} \rightarrow \pi \quad i s c o l l e d$ hononeseous of degree $-k$ g

$$
F(\lambda \Lambda)=\lambda^{-k} F(\Lambda)
$$

We fren hove
$-\frac{\text { Lemma }}{\sim}$ let $t=\infty \rightarrow 8$ homog of degre- k Then the funchon

$$
\begin{aligned}
& f=\mathbb{C} \rightarrow \text { defred as } \\
& f(\tau)=F(N(\tau, 1)) \text { sahsfies }
\end{aligned}
$$

(*) $f\left(\frac{a \tau-b}{c \tau+d}\right)=(c t+d)^{+k} f(c) \quad \forall\left(\begin{array}{ll}(c) & b \\ c & c\end{array}\right)<T$
This correspondence is a bifechon:
(Gien f which schyfès (*) defre

$$
F\left(\Lambda\left(w_{1}, w_{2}\right)\right)=w_{2}^{-k} f\left(\frac{w_{1}}{w_{2}}\right)
$$

Prof Exerise

The def of funchin $f=H \rightarrow \mathbb{L}$ which sahifg (*) plus some reotionty condinions many not look veny natural at forst sight but they anse "naturally" in a vanicty of segfects in noth ond physics and these funchons offen encode arthmetic, seometric combinatorial iffomutōn -
We start with the most bosic such Guchions which rave shong regulunty conditons

Defn $\quad \pi=H \rightarrow C$ is called a moolular fom of ut $k \in \mathbb{N}$ fo- $T==s(2, \mathbb{Z})$ if
a) f is holom on $H \quad\left(\frac{\partial}{\partial \bar{z}} f=0\right)$
b) $f(\gamma \tau)=(c \tau+d)^{k} f(z) \quad \forall\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\gamma \in \Gamma$ and $r c=\frac{a r+b}{c r+d}$
c) f is iholomorphti at x^{4}.

If ue choose $r=\left(\begin{array}{ll}1 & 1 \\ 6 & 1\end{array}\right)$ tren

$$
b) \Rightarrow f(c+1)=f(c)
$$

and f holom on $14 \Rightarrow$

$$
f(z)=\frac{5 a(n) e^{2 \pi} t}{n e t}
$$

f holon af ∞ means thet

$$
a(n)-0 \quad f^{n} \quad n<0
$$

Q= Whot is on example of a modulo- fom?
Af The ponne examples ore the so colled
O funchons.
The simpleot bne of trese does not actuolly fit inte our simplest defrimon in tre sense that they ane modula foms for a splognop of I in gorent , ond thos ureght b IS not an integen in pered but holf an intege.
Necerhless, for the purpote of nothahtan cets look of the simpleot Q Jurchon and fee why a nmber theorst noight core to study such a funchon.
The simplest θ funchon is defred

$$
\begin{gathered}
\text { os } \quad \theta(c)=\frac{5}{n \leq Z} \\
c(x)=e^{2 \pi x} \\
2 \pi n^{2} c
\end{gathered}
$$

Clearly $\theta(z+1)=\theta(z)$

$$
\begin{equation*}
\theta(\bar{c})=\frac{2}{n}-\left(n^{2} c\right)=1+\frac{\infty}{n=1} 2 e^{2 \pi^{n} c} \tag{0.}
\end{equation*}
$$

If

$$
\theta(c)=2 a(m) e^{2 \pi m}
$$

then its math Fourier oof is ether 1,2 of 0 depending on whether
Mi s zuro, a squat or non-igueratp te $a(n)= \begin{cases}1 & \text { gnat } \\ 2 & 0 m=\frac{I}{2} \\ 0 & 0 . \mu .\end{cases}$

NAt too intereshing but veuthless θ carried sore orthmetie infomohon in its Fount coeffuents.
To moke it more interesting, lets look of its stir power

$$
\begin{aligned}
& \theta s(z)= \sum_{n_{1} \in \mathbb{R}} \sum_{n_{2} \in \mathbb{L}} \sum_{n_{s} \in \mathbb{Z}} e^{2 \pi 1\left(n_{1}+4 n^{2}\right) \tau} \\
&=1+\sum_{m} \Sigma_{s}(m) e^{2 \pi m z}
\end{aligned}
$$

Where $r_{s}(m)=\#\left\{\left(n, n_{s}\right) \in \mathbb{Z}^{s} \mid n_{1}^{2}++n_{s}^{2}=m\right\}$
Hor we count reps dishnct even if order of the sign is changed. eg $r_{2}(5)=8$ since $5=(\pm 2)^{2}+(\pm 1)^{2}$

$$
=(\pm 1)^{2}+(\pm 2)^{2}
$$

(3) (2) is a generating funchan far the represertahon numbers of sums of squares.
Q. How does this repp or does it rel to understand $f(m)$?

A- In geneal the "effechueness" of modular forms in the study of arithmetic problems is due to the feet that the space $\mu_{k}(T)=\sum \sum f=H-3 \mathbb{C} \mid f$ is a mod Bn m of $u+k$ 早
is a finite din l Vector space
Hence suppose you know that dim $m_{c}(p)=1$ for sore $k($ This n the case for example when $k=4$) And suppose you
hove found 2 differs functions coning from different sources, f, and g both ore in $\mu_{k}(\Gamma)$ Then re know that $f=\alpha g$ fer sore $\alpha \in \mathbb{L}$ if $f=\sum a_{n} e(n z) \quad g=\sum b_{n} e(n z)$ Then $\quad a_{n}=\alpha b_{n} \quad \forall n \quad$ and $\alpha=a_{0} / b_{0}$

In foct this is precitely whot is bekind the fomous fomulas of Sacobi for suns of $2,4,68$ squares
Thm $($ Jacohi $(1804-1851)$
(1) $r_{2}(m)=4 \sum_{d m} x_{-4}(d)$
whee $\otimes_{-4}(d)=\left\{\begin{array}{cc}1 & f=1(G) \\ -1 & d=3(G) \\ 0 & \text { else }\end{array}\right.$
(2) $\pi_{4}(m)=8\left(2+(-)^{m}\right) \sum_{d m_{d d}} d>0$
(Since d is of leest 1)
(3) $r_{6}(m)=16 \sum_{d / m} d^{2} x_{-4}\left(\frac{m}{d}\right)-4 \sum_{d / m} d^{2} x_{-4}(d)$
$\cos (L$ Legre $) \quad r_{4}(m) \leq 0$ for an $m>0$. Te eveng tve integer m con be represented as a sum of 4 squares-
Rk Suobbils thm gues a quahtatie vesion g) Laroge's thre.

Sums of squares $x^{2}+-+x_{5}^{2}=Q(x)$ Is the stmplest quad-the jom (fimplest lathee, Hore gereral θ-anchons attacted to quadrohc foms (or equivalenty lathíes)

Con be defired
le $Q=1 \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\left(x_{1}, x_{n}\right) \mapsto Q\left(x_{1},-x_{n}\right)=\sum_{n j} a_{j}-x_{1}-x_{y}-
$$

be an integrel quadratic fom ie $D(x) \in \mathbb{Z}$

$$
Q(x)=x A x^{i} \quad \rho \quad \operatorname{soce} A=(\operatorname{lig}) \operatorname{sym}
$$

morix We'll assume A is posche defint
The theta ginchon atfeched to Q
is $Q_{Q}(\tau)=\sum_{x \in \mathbb{Z} n} q^{Q(x)}$

$$
=1+\sum_{m=1}^{\infty} x_{m} q^{m}
$$

Whee $M_{r}=\#\left\{x \in \mathbb{Z} \mid x A x^{t}=m\right\}$ and $q=e$

Equvalently ve co associufe to a lathe $\quad A=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n} \in \mathbb{R}^{n}$ $w /\left\{v_{1}-u_{n}\right\}$ a busis of \mathbb{R}^{n}, a θ sereo $\theta(\tau)$ as follous.

Any $l \in V$ is of the fom $l=x_{1} v_{1}+x_{n} v_{n}$ let $M=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{n}\end{array}\right)$ Ten fot any $\ell 61$

$$
\begin{align*}
& \langle l, \ell\rangle=x M \mu^{t} x^{t}=x A x^{t} \text { th } \tag{0,16}\\
& A=M n^{t}, \quad x=\left(x_{1}-x_{n}\right)
\end{align*}
$$

Define $\theta_{\Lambda}(\tau)==\frac{\left.\sum_{l \in \Lambda} q<e\right\rangle}{\left.l \in l^{\prime}\right\rangle}$

$$
=1+2 x_{m} q^{m}
$$

$$
\left.\begin{array}{rl}
x_{n} & =\#\{\ell \in A \mid<l, e>=m
\end{array}\right\}
$$

as before
These functions also have opplicohons to the sphere pecking Problem :

Sphere Packing Problem.
If one hos a lathe $\mathcal{A} \mathbb{R}^{n}$ an put a sphere at each lather point to puck 12^{n} wt spheres, then densify of the pocking $\quad A_{\Lambda}=\binom{$ volume of }{ ge sphere }$\binom{$ density of }{$\Lambda}$
density of $\lambda=$ average $\#$ of points per unit volume Clearly the largest sphere we con put (without overtops) is determined by p

$$
f=\underset{\sim}{m} \text { instance }=\min \left\{\left(l\left|=\langle l, l\rangle^{1 / 2}\right| l \in \Lambda\right\}\right.
$$

What is the dentest sphee packind in $\mathbb{R}^{n} ?$

$$
\begin{array}{ll}
n=1, & \Delta=1 \quad-f] \\
n=2 & \Delta=\frac{\pi}{3 \sqrt{2}} \approx 074
\end{array}
$$

gien by
Hexagonal lathíe

(Gaws5)
gien by face centred Ckepler's problem)

Apf announced by tales in 1998 completed in 2014.
Fon $n \geq 4$ it was a uide open problem untirecently
In 2016, viazouska proved that in dim=8

$$
A=F_{8}=\left\{\left.V=2 a_{1} e_{f} \in \mathbb{R}^{8} \cup\left(\pi+\frac{1}{2}\right)^{8} \right\rvert\, \sum_{q}\right.
$$ gres tre densest pocking

Folloued mnedicley by
$n=24 \quad \Lambda=$ leech lathce is ore densest
proed by H cohn, Acumer, smmer, D-Radchento, M. Viawsusten. The proof uses the theog of nod foms pogeker with lureor progranng bounds.

For lathe pocking density of $A=\frac{1}{d e t n}$ whee $m=\left(\frac{v_{1}-1}{u_{n}}\right) \quad\left\{1, u_{n}\right\}$ a basis of 1 .

$$
\Delta=\binom{\text { vol io boll of }}{\text { radus } \rho / 2}\left(\frac{\operatorname{dens} 4}{}\right)
$$

For loge n, we know no feasible way to compute the rinmel length of a general lothce given is gonerchors
We first change the problem to a seemingly herder one and ask not only for miñmel length but also for all lengths.
I guvienty we cst for the generahng punching fo- the squares of Gel lengths

$$
\begin{aligned}
& \theta_{\Lambda}(q)=\sum_{l \in \Lambda} q^{<l, l>}=1+\sum y_{m} q^{m} \\
&-1+K l^{2}+
\end{aligned}
$$

First non-2er Tourien coff (after 1) gives the square of f in the power and He kissing \# Las coff.
$K=\#$ gl lathe vechors of minimal 119) length
$\frac{ \pm x}{2}$ in $n=8, \theta_{8}$ is actucly a nod fam of wt 4 for $\mathrm{SC}_{2}(\mathbb{Z})$
$\theta_{E_{8}} \in M_{4}(\Gamma)$ Where \bar{I} another wt 4 fond (which well see soon) The so called Eisenstein sen es

$$
B_{4}(\tau)=1+240 \sum_{m} \theta_{3}(m) e^{2 \pi m e}
$$

whee $\sigma_{3}(m)=\sum_{21 m} d^{3}$
But $\operatorname{din} M_{4}(\Gamma)=1 \quad$ Hence

$$
\begin{aligned}
1+k \rho^{2}+={ }_{F} & =\frac{\&}{8}=1+240 q^{2}+\square \\
& \Rightarrow \rho^{2}=2, \quad \alpha=240
\end{aligned}
$$

ie Min length is $\sqrt{2}$ attained by

$$
240 \text { vectors }:\left(\begin{array}{cc}
112 & \text { vectors } \\
128 & \pm e j \pm e_{j} \\
& \frac{1}{2} \sum a j e j \\
w / a j= \pm 1 \\
& \pi a j=1
\end{array}\right)
$$

See Convay Spare Lathes and sphere Peelings

RKODifferent latices can give rise to the same O function
eg in 16 dirensions there are 2 inequivolont unimodulan (tet $M=1$) lathes $D_{16}, F_{8} \oplus F_{8}$ but

$$
\theta_{D_{16}}=\theta_{8} \Theta E_{8}
$$

This is inhmofely connected to the queshon
"Can you hear the shape of a dram)"
Tho manifolds induced by 2 quadrate forms ore non-isom but isospectral Ge have the same spectrum for the associated Loplacion)
(2) Jacobi studied nose geneal Ofunchons funchons of 2 vencbles $x ~ z \in \mathbb{H}, z \in \mathbb{C}$

$$
\theta(\tau, z)=\sum_{n \in 7<} e^{2 \pi n z} e^{\pi n^{2} c}
$$

$\theta(i t, x)$ is a sold of the hoot eqn

$$
\begin{aligned}
& \text { in } \quad \mathbb{R} / 7 \quad(t \in 1 R \quad x \in \mathbb{R} \\
& \frac{\partial}{\partial t} \theta=\frac{1}{4 \pi} \frac{\partial^{2}}{\partial x^{2}} \theta
\end{aligned}
$$

$\theta(z, 2)$ sahsfy the fllowing
tronsfomehons
(a) $\theta(\tau+2, z)=\theta(z, z)$
(b) $\theta(c, z+\tau)=e^{-2 \pi i z-\pi t \tau} \theta(c, z)$

Fanchons which sohsfa smilan Aonsfometios properhes are now called Jocobi module foms and appear in a lot of problems in Physics and feanety

Propoby the most exubng applicohion of θ to Number oreoz is is ralahion to the Remann zote funchon

$$
Q(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{p}\left(1-p^{-s}\right)^{-1} \quad \operatorname{Res} \Delta 1
$$

is a protrype of a Dinchlet senen with on Euler product.
It is knoun thot $N(s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \varepsilon^{(s)}$ tien $\Delta(s)$ hos mesom cenhnwhor to all $[$ except for sinmple poles at $s=1,0$ and schsfres the Funcl agn $f(s)=111-$

What is tre relaton behen θ and \&?

$$
A(2 s)=\int_{0}^{\infty} \frac{1}{2}\left(\theta\left(\frac{1 t}{2}\right)-1\right) t^{s} \frac{d t}{t}
$$

A is tre 'lellin trensfom of θ
θ sohsfes (a) $\theta(c+1)=\theta(z)$
(b) $\theta\left(-\frac{1}{4 c}\right)=\sqrt{\frac{27}{1}} 0(c)$
$\sqrt{2}=$ agcinent in RHP
Well see thet (b) \Rightarrow Ancly cont and funcl eq of $\&(s)$

Sine $g(s)=\Pi\left(1-p^{-s}\right)^{-1} \quad R e_{s} \rightarrow 1$
for Res $>1, \mathrm{~s}(s) \neq 0$
By FE this pives that $\rho(s) \neq 0$ fot Res<0 exceept oo- simple zenas at $s=-2,-4$, coming fon the poles of T-function.

$R H$ and $R(5)=0$ Then $\operatorname{les}=\frac{1}{2}$

RL: The alahon bekuen $s(s) \leftrightarrows \theta(\rho)$ is a protaype of the relohon behween

$$
\left(\begin{array}{l}
\text { zeta, } \\
2 \text { finchons } \\
\text { arth } F C \text { ad } F E
\end{array}\right) \longleftrightarrow\left\{\begin{array}{l}
\text { modula } \\
\left(\begin{array}{l}
\text { (aumomphic } \\
\text { foms }
\end{array}\right.
\end{array}\right.
$$

Rk (1) $2(1+i t) \neq 0 \quad t \in \mathbb{R}$ (ie pushing the non uonishig to R Res $=1$)
\Rightarrow PNT Pmore vumber Theven

$$
\Pi(x)=\#\{p \text { prme } \mid p<x\} \sim \frac{x}{\ln x}
$$

(2)

$$
\begin{aligned}
& z(-n)=(-1)^{n} B_{n+1}^{1 / n+1} \\
& 2(2 r)=(-1)^{n-1} B_{2 r} \frac{(2 \pi)^{2 r}}{2(2 r)!} \\
& \varepsilon(-1)=-1 / 12 \quad, \quad 2(0)=-1 / 2
\end{aligned}
$$

We know q at regche integers
\& of tve een integors
But \& at odd tue intges are mystam
Q(3) is rratond (Apéry)

Bn's are the Benouli \#s

$$
\begin{gathered}
\frac{t}{e^{t}-1}=\sum_{m=0}^{\infty} \frac{B_{m} t^{m}}{m!} \\
\left(B_{2 k+1}=0 \quad g_{r} \quad k>0\right.
\end{gathered}
$$

(3) The conergence of tre Fuler produet $\prod_{R}^{\|}\left(1-p^{-s}\right)^{-1}$ Res >1 is equiudent to the convergense. of the $\sec +5 \frac{\sum}{p} P^{-s}$. The pole of $\Omega(s)$ of $s=\square \Rightarrow \sum \frac{1}{p}$ dueyes This in retun implies there are roly many primes f

Coming attrecton-(1) Welll see thet modularity of $\theta \rightarrow A, C$ and FEE of q
Similey gien a modular fom $f=\sum a_{n} e(n e)$ one con assocuate a Dinchlet gerzes $L(f i s)=\sum a_{n} n^{-s}$ mod of $f \Rightarrow A \subset$ and puncle eyn of $L(f, s)$
$(0,5)$
(2) $\ell(s)$ hos on Euler product

Is this rue for any $L(f, s)$
M1 In general NOL
But will see that it is Mere cate if f is encenfunchon of obtain operators $T_{n}=M_{k} \longrightarrow M_{k}$ $\forall n$, and the spore $\mu_{k}(n)$ hos a basis consisting of such fuchons.

Finally The tradition of determining whether a Dinchlet series $\sum \frac{o_{n}}{n^{3}}$ has meromorphic conhnuchon to \mathbb{C} and computing its special values or residuen at poles has a very long and rich history -For example Another such the is Dinchlet's the on primes in arithmetic progressions.
let $m>0$ be glen, and $a<m,(a, m)=1$ Consider the progression

$$
\{a, a+m, a+2 m, \quad\}=
$$

Queshän Are there xoly mong pmes in this? list?
How are they dishributed.
Let $P_{a}=\{p, p \equiv a \bmod m\}$
$\frac{\text { Dinchlet'sthm }}{\text { in any } P_{a}} 0$
(2) The $\phi(m)$ disfoint sets contain asymp qually many prines

Drichlet's thm is a consequence of the foct thot

$$
\lim _{s \rightarrow 1} L\left(x_{m}, s\right) \neq 0 \quad \text { where }
$$

$\chi_{m}=\mathbb{L} / m \mathbb{Z}_{L} \rightarrow \sigma$ is a charafer extendod to oll $\nless \mathrm{by} \quad \mathrm{x}$ (unnatm

$$
\begin{array}{ll}
x(n)=\int^{x(n \text { rodm })} & f(n, m)=1 \\
0 & \text { eloe }
\end{array}
$$

There are otfer souncen of Lyinchons

- Nunber frelds
- Sclots repns

$$
\rho+G=(5 a(\equiv) K) \rightarrow \sigma L_{n}
$$

- Geoment bo atfected to
Elliplic cuned

Let I be a cine / Q glen by Veerstrass eqn $y^{2}=x^{3}+A x+B=g(x)$ with disc $\Delta=-46\left(4 A^{3}+27 B^{2}\right)$ For $A, B \in \pi, A \neq 0$ considen $f 0-$ ech prove P, the reduced cure E/FP-
let $N_{p}=\#$ of points on $I /$ /Tp It turns out that ap is vell opproximeled by P utore precisely the difference

$$
\begin{aligned}
p-x_{p}= & =a_{p} \operatorname{soh} f \\
& \mid a p l<2 \sqrt{p} \quad \text { Hosse }
\end{aligned}
$$

In otdert to undestend hou ap vang with p Hasse began, weil continued to inveshgcte the $4-$ funchon for I which is defred b on suler produt

$$
\left.L(E, s)=\pi()^{\rho / \Delta}\right)^{-1} \pi\left(1 a^{\prime} a p^{-s}+p^{1-2 s}\right)^{-1}
$$

Conjeche (tasse-wel) $4($ II,s) hos AC to on entre funchin and sahsf $A(E, s)=1(I, 2-s)$
This confectue x now a thm due to ures, uiles tajor
Conjectue Shimure Itanjand uai
let $f(z)=\sum 0$ e $(n z)$ Then
f is a cusp fom of ut 2 for
sone sig y T.
CHere ai's be obteined frem ap multplicahey, ap as aboen- $P-N_{p}$)
This is olso now a thm die b cules Bral-Conrad-Diamond Taylor
$\operatorname{Thm}($ Fray-sere-Rebet)
STW confeche \Rightarrow temet' last then Cor (Uues) Fernet's last fin holds.

